Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 13(1): 5074, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2267004

ABSTRACT

Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4). The vaccine was safe and well tolerated and serum RBD IgG antibodies were induced in all animals and in the nasal washes and bronchoalveolar lavages in the three youngest animals. All control animals became strongly sgRNA positive in BAL, while all vaccinated animals were protected, although the oldest vaccinated animal (V1) was transiently weakly positive. The three youngest animals had also no detectable sgRNA in nasal wash and throat. Cross-strain serum neutralizing antibodies toward Wuhan-like, Alpha, Beta, and Delta viruses were observed in animals with the highest serum titers. Pro-inflammatory cytokines IL-8, CXCL-10 and IL-6 were increased in BALs of infected control animals but not in vaccinated animals. Virosomes-RBD/3M-052 prevented severe SARS-CoV-2, as shown by a lower total lung inflammatory pathology score than control animals.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Animals , Humans , Macaca mulatta , Virosomes , SARS-CoV-2 , Toll-Like Receptor 7 , COVID-19/prevention & control , Adjuvants, Immunologic , Broadly Neutralizing Antibodies , COVID-19 Vaccines , Antibodies, Viral , Antibodies, Neutralizing
2.
Front Immunol ; 13: 845887, 2022.
Article in English | MEDLINE | ID: covidwho-1775679

ABSTRACT

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Subject(s)
COVID-19 , Vaccinia virus , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccinia virus/genetics
3.
Viruses ; 13(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367929

ABSTRACT

The post-acute phase of SARS-CoV-2 infection was investigated in rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2 was shed via the nose and throat, and viral RNA was occasionally detected in feces. This phase coincided with a transient change in systemic immune activation. Even after the alleged resolution of the infection, computed tomography (CT) and positron emission tomography (PET)-CT revealed pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histological examination of the lung tissue revealed mostly marginal or resolving minimal lesions that were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also found in extrapulmonary tissue samples, such as conjunctiva, cervical, and mesenteric lymph nodes. However, 5-6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable in a wide range of tissue samples in 50% of the macaques and included amongst others the heart, the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing virus replication during the post-acute phase. These results could be relevant for understanding the long-term consequences of COVID-19 in humans.


Subject(s)
COVID-19/pathology , COVID-19/virology , Lung/pathology , SARS-CoV-2/physiology , Animals , Antibodies, Viral/blood , COVID-19/immunology , Cytokines/blood , Disease Models, Animal , Humans , Lung/virology , Lymph Nodes/pathology , Lymph Nodes/physiopathology , Macaca fascicularis , Macaca mulatta , RNA, Messenger/analysis , RNA, Viral/analysis , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL